each main wheel brake assembly must not be less than the kinetic energy absorption requirements determined under either of the following methods—

(1) The brake kinetic energy absorption requirements must be based on a conservative rational analysis of the sequence of events expected during a rejected takeoff at the design takeoff weight.

(2) Instead of a rational analysis, the kinetic energy absorption requirements for each main wheel brake assembly may be derived from the following formula—

KE=0.0443 WV²N

where.

KE=Kinetic energy per wheel (ft.-lbs.);

W=Design takeoff weight (lbs.);

V=Ground speed, in knots, associated with the maximum value of V_1 selected in accordance with 23.51(c)(1);

N=Number of main wheels with brakes.

[Amdt. 23-7, 34 FR 13092, Aug. 13, 1969, as amended by Amdt. 23-24, 44 FR 68742, Nov. 29, 1979; Amdt. 23-42, 56 FR 354, Jan. 3, 1991; Amdt. 23-49, 61 FR 5166, Feb. 9, 1996]

EFFECTIVE DATE NOTE: By Amdt. 23–62, 76 FR 75757, Dec. 2, 2011, §23.735 was amended by revising paragraph (e), effective Jan. 31, 2012. For the convenience of the user, the revised text is set forth as follows:

§23.735 Brakes.

* * * *

(e) For airplanes required to meet §23.55, the rejected takeoff brake kinetic energy capacity rating of each main wheel brake assembly may not be less than the kinetic energy absorption requirements determined under either of the following methods—

(1) The brake kinetic energy absorption requirements must be based on a conservative rational analysis of the sequence of events expected during a rejected takeoff at the design takeoff weight.

(2) Instead of a rational analysis, the kinetic energy absorption requirements for each main wheel brake assembly may be derived from the following formula—

 $KE = 0.0443 WV^{2}/N$ where;

KE = Kinetic energy per wheel (ft.-lbs.);

W = Design takeoff weight (lbs.);

- $\label{eq:V} \begin{array}{l} V = Ground \mbox{ speed, in knots, associated with} \\ the maximum value \mbox{ of } V_1 \mbox{ selected in accordance with } \$23.51(c)(1); \end{array}$
- N = Number of main wheels with brakes.

14 CFR Ch. I (1–1–12 Edition)

§23.737 Skis.

The maximum limit load rating for each ski must equal or exceed the maximum limit load determined under the applicable ground load requirements of this part.

[Doc. No. 26269, 58 FR 42165, Aug. 6, 1993]

§23.745 Nose/tail wheel steering.

(a) If nose/tail wheel steering is installed, it must be demonstrated that its use does not require exceptional pilot skill during takeoff and landing, in crosswinds, or in the event of an engine failure; or its use must be limited to low speed maneuvering.

(b) Movement of the pilot's steering control must not interfere with the retraction or extension of the landing gear.

[Doc. No. 27806, 61 FR 5166, Feb. 9, 1996]

FLOATS AND HULLS

§23.751 Main float buoyancy.

(a) Each main float must have—

(1) A buoyancy of 80 percent in excess of the buoyancy required by that float to support its portion of the maximum weight of the seaplane or amphibian in fresh water; and

(2) Enough watertight compartments to provide reasonable assurance that the seaplane or amphibian will stay afloat without capsizing if any two compartments of any main float are flooded.

(b) Each main float must contain at least four watertight compartments approximately equal in volume.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23-45, 58 FR 42165, Aug. 6, 1993]

§23.753 Main float design.

Each seaplane main float must meet the requirements of §23.521.

[Doc. No. 26269, 58 FR 42165, Aug. 6, 1993]

§23.755 Hulls.

(a) The hull of a hull seaplane or amphibian of 1,500 pounds or more maximum weight must have watertight compartments designed and arranged so that the hull auxiliary floats, and tires (if used), will keep the airplane